

Методы выделения белков. ПААГ-электрофорез.

Спецпрактикум по биохимической генетике - Лекция 6
Старший преподаватель: PhD, Смекенов Изат Темиргалиевич
Кафедра молекулярной биологии и генетики

© цель лекции

Изучить методы выделения белков и их анализ с помощью ПААГ-электрофореза для понимания характеристик белков и их поведения в различных условиях.

🖈 Задачи

- Рассмотреть основные методы выделения белков, включая осаждение, хроматографию и центрифугирование.
- ✓ Описать принципы работы ПААГ-электрофореза и его применение для разделения белков по молекулярной массе и
- выделение белков, ПААГ-электрофорез, осаждение, хроматография, центрифугирование, разделение белков, визуализация белков
 - ✓ Объяснить процесс подготовки образцов для ПААГ-электрофореза и методы их окрашивания для визуализации.
 - ✓ Изучить интерпретацию результатов ПААГ-электрофореза и значение полученных данных для дальнейших исследований.

В Ключевые термины

выделение белков, ПААГ-электрофорез, осаждение, хроматография, центрифугирование, разделение белков, визуализация белков.

© ТЕЗИС

1) Выделение белков

- ▶ Белки извлекаются из клеток или тканей с помощью буферов, сохраняющих их стабильность и активность.
- Основная цель получить чистый белок для дальнейшего анализа или функциональных исследований.

2) Методы осаждения и центрифугирования

- ▶ Осаждение (например, сульфатом аммония) позволяет концентрировать и частично разделять белки по солюбильности.
- > **Центрифугирование** используется для разделения осадка и супернатанта, упрощая последующую очистку.

3) Хроматография

- Методы разделения белков по заряду (ионообменная), размеру (гель-фильтрация), специфическому связыванию (аффинная) и гидрофобности (гидрофобная).
- > Позволяет получать белки высокой чистоты для функциональных или структурных исследований.

4) ПААГ-электрофорез

- У Используется для разделения белков по размеру и/или заряду.
- ➤ Может быть денатурирующим (SDS-PAGE) или нативным (native PAGE).

5) Разделение и визуализация белков

- > После разделения белки визуализируют с помощью **окрашивания геля** (кумасси, серебро) или **Western blot**.
- Позволяет оценить чистоту, размер и присутствие белка в образце.

© ОСНОВНЫЕ ВОПРОСЫ

- 1. Какие методы применяются для первичного выделения белков из клеток или тканей?
- 2. Как работают осаждение и центрифугирование, и какую роль они играют в очистке белка?
- 3. Чем различаются методы хроматографии по принципу разделения белков?
- 4. Как ПААГ-электрофорез позволяет анализировать белки и чем различаются SDS-PAGE и нативный PAGE?
- 5. Какие методы визуализации белков применяются после разделения, и как они помогают оценить чистоту и размер белка?
- 6. Как сочетание выделения, хроматографии и электрофореза обеспечивает получение белка высокой чистоты?

- Прежде чем образец белка может быть выделен и идентифицирован с помощью электрофореза и вестерн-блоттинга, белки должны быть отделены от составляющих частей клетки.
- Это означает, что клеточные стенки и мембраны должны быть разбиты или лизированы.
- Ниже приведены некоторые из наиболее распространенных и надежных методов лизиса клеток.

- Соникация
- > Помол жидким азотом
- > Гомозенизация «стекл. шариками»
- > Лизирующие буферы

Соникация - разрушение ультразвуком

- Обработка ультразвуком включает в себя введение наконечника в пробирку или эппендорф и передачу звуковой волны высокой интенсивности по всему образцу для разрушения клеточных стенок и разрушения тканей.
- Обработка ультразвуком проста, и ее можно применять к образцам практически любого размера, но ее следует использовать с осторожностью, поскольку этот метод может вызвать перегрев и денатурацию белков (разрушение).
- Рекомендуется использовать несколько коротких звуковых импульсов, а не один длинный. Все обработки ультразвуком должны проводиться на льду, а образцы должны отдыхать и охлаждаться между соникациями.

- Ультразвуковой электронный генератор преобразует мощность линии переменного тока в сигнал 20 кГц, который управляет пьезоэлектрическим преобразователем / преобразователем.
- Коллапс пузырьков преобразует звуковую энергию в механическую энергию в виде ударных волн, эквивалентных давлению в несколько тысяч атмосфер (300 МПа).

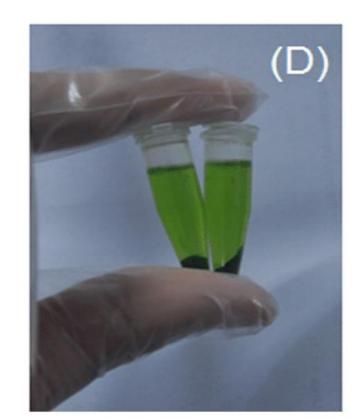
PRODUCT	INTENSITY	TIP SIZE	VOLUMERANGE	ORDER NO.
Stepped Micro Processing Tip	Very High	Diameter: 5/32" (3.8 mm) Length: 10.1" (25.6 cm)	250 μL - 10 mL	OR-T-156
Intermediate Processing Tip	High	Diameter: 3/8" (9.5 mm) Length: 8.6" (21.8 cm)	10 mL - 250 mL	OR-T-375
1/2" Processing Tip	Medium-High	Diameter: 1/2" (12.7 mm) Length: 5.38" (13.65 cm)	10 mL - 300 mL	OR-T-500
Standard Processing Tip	Medium	Diameter: 3/4" (19 mm) Length: 4.1" (10.5 cm)	25 mL - 500 mL	OR-T-750
Full Size Processing Tip	Low	Diameter: 1" (25.4 mm) Length: 4.85" (12.3 cm)	50 mL - 1 L	OR-T-1000

Лизис бактериальных клеток

- 1. Центрифугирование клеток в течение 5 минут при 270 х g в микроцентрифуге.
- 2. Удалите оставшуюся среду и ресуспендируйте клетки в 30 100 мкл буфера RIPA.
- 3. Инкубируйте осадок на льду в течение 30 минут.
- 4. Соникируйте образцы следующим образом.
- 5. Поместите зонд соникатора на частоте 20 кГц.
- 6. Поместите клетки в микроцентрифужную пробирку объемом 1,5 мл и осторожно переместите под кончик зонда соникатора.
- 7. Зонд начнет вибрировать буфер в течение 2 × 10 секунд, чтобы уменьшить вязкость (это может привести к вспениванию образцов).
- 8. Однако в этом протоколе пенообразование образцов не было проблемой после обработки ультразвуком, когда продолжали иммунопреципитацию, Вестерн-блоттинг или анализы ELISA.
- 9. В зависимости от образцов и вязкости образцов клетки можно снова обрабатывать ультразвуком в течение еще 10 с.
- 10. Как только образцы обрабатывают ультразвуком, инкубируют на льду в течение 5 минут.
- 11. Центрифуга при 10000 х g в течение 20 мин для осаждения осадка (мусор может содержать нелизируеме клетки, ядра или не лизированные органеллы).
- 12. Перенесите супернатанты в новую микроцентрифужную пробирку и наклейте этикетку.
- 13. Хранить при -20 ° С.

Помол жидким азотом

- Используя этот метод, исследователи смешивают образцы белка с жидким азотом, пока они не замерзнут и не станут хрупкими. Образцы могут быть размолоты ступкой и пестиком.
- Измельчение сопряжено с низким риском целостности белков, но жидкий азот может быть опасным. Измельчение в жидком азоте является отличной техникой для сложных образцов, таких как образцы растений и грибов.



Использование стеклянных шариков

• Этот метод включает в себя объединение образца клеток с крошечными шариками в миске, которую затем механически перемешивают, чтобы разбить клетки на части. Чтобы избежать перегрева образца, это следует делать в холодной среде, и между циклами взбивания образцу нужно дать остыть.

Glass beads, acid-washed (425-600 µm)

Подготовка стеклянных шариков

1.	Замочить стеклянные шарики на 16 часов в концентрированно	й HCl.
	Samo into cretominible maprillina to lacos s kongenipriposanilo	, i i Ci.

- 2. Тщательно промыть в дистиллированной воде.
- **3.** Выпекайте их в течение 16 часов при температуре выше 150 ° С.
- **4.** Охладите стеклянные шарики до 4 ° С или на льду перед использованием.

Lysis buffer

50 mM Tris-HCl pH 8.0

1% DMSO

50-200 mM NaCl

1 mM EDTA

1 mM PMSF

1 μg/ml leupeptin

1 μg/ml pepstatin A

Процедура выделения белков с дрожжевых клеток

- 1. Приготовьте стеклянные шарики, промыв их в концентрированной соляной кислоте, затем тщательно промойте (убедитесь, что рН затем нейтрален) и высушите. Высушенные шарики должны быть охлаждены перед использованием.
- 2. Ресуспендируйте клетки в равном количестве охлажденного лизирующего буфера и поместите суспензию в прочную пробирку (желательно не в стакан). Добавить PMSF (100 мМ) на мл суспензии) в этой точке.
- **3.** Добавьте 1 3 г охлажденных стеклянных шариков на грамм массы сырой клетки. (или 1\3 от объема).
- **4.** Vortex 3 5 раз в течение 1 минуты, каждый раз, сохраняя клетки на льду в течение 1 минуты между встряхиваниями. используйте самую высокую настройку вихревого смесителя.
- 5. Удалить стеклянные шарики.
- **6.** Удалите клеточный мусор ультрацентрифугированием при 4 ° С в течение 30 минут при 45000 об/мин.

Лизирующие буферы

- Самый простой, но и самый дорогой способ лизировать клетки и ткани использовать специальный буфер для лизиса. Буферы для лизиса предназначены для химического разрушения клеток и тканей.
- Доступен большой выбор буферов, от умеренных буферов лизиса до сильных, хаотропных, денатурирующих буферов.
- Буферы для лизиса используют комбинацию буферных агентов, солей, детергентов, восстановителей, хаотропов и литических ферментов для высвобождения белков. Использование химического лизиса также может быть объединено с вышеуказанными методами механического лизиса для улучшения экстракции белков.

Важно!

- Не забывайте, что со всеми этими методами, предназначенными для высвобождения интересующего белка, также высвобождаются эндогенные клеточные протеазы. Так что не забывайте ВСЕГДА использовать коктейль ингибитора протеазы.
- Четыре основных класса протеолитических ферментов обычно используются для описания протеаз.
- Сериновые протеазы, вероятно, лучше всего охарактеризованы. Этот класс протеаз включает трипсин, химотрипсин и эластазу.
- Класс цистеиновых протеаз включает папаин, кальпаин и лизосомальные катепсины.
- Аспарагиновые протеазы включают пепсин и ренин.
- Металлопротеазы включают термолизин и карбоксипептидазу А.

Коктейли с ингибиторами протеазы (µМ-mM)

• Компоненты:

- AEBSF
- Апротинин
- Бестатин
- E-64
- ЭДТА
- Лейпептин
- Пепстатин
- Апротинин
- Фосфорамидон
- PMSF

Ингибитор протеазы	концентрация	стоковая конц.	растворитель	ингибирование
Апротинин	1-2 мкг / мл	10 мг/мл	воды	сериновые протеазы
бензамидина	15 мкг / мл	10 мг / мл	воды	сериновые протеазы
ЭДТА, ЭГТА	1-10 mm	0,5 M (pH 8)	воды	металло протеазы
лейпептина	1-2 мкг / мл	10 мг / мл	воды	цистеиновые и сериновые протеазы
PMSF	0,1-1,0 mM	100 mm	изопропиловый спирт	сериновые протеазы
Пепстатин А	1 мкг/мл	1 мг/мл	метанол	аспарагиновые протеазы

Буферная система

- Первый выбор, который мы должны сделать, это выбор природы и рН буферной системы, которую мы хотим использовать. Это зависит от:
- стабильности целевого белка по отношению к рН и буферному соединению.
- последующей методики. Чтобы избежать потери времени и белка, вызванной дополнительной стадией замены буфера, рекомендуется выбирать буфер, который совместим с последующим методом работы.

Буферы и их диапазоны рН перечислены в таблице ниже. Наиболее часто используемые буферы обозначены красным. Они обычно используются в концентрациях 20-50 мМ.

Примечания:

- HEPES мешает анализу белка Лоури (не анализу Брэдфорда). Он может образовывать радикалы в различных условиях и не должен использоваться в системах, где изучаются радикалы.
- Фосфатные буферы несовместимы с использованием двухвалентных катионов (*например*, ионов Mg ²⁺).

буфер	диапазон рН
Лимонная кислота - NaOH	2,2 - 6,5
Цитрат натрия - лимонная кислота	3,0 - 6,2
Ацетат натрия - уксусная кислота	3,6 - 5,6
Натриевая соль какодиловой кислоты - HCl	5,0 - 7,4
MYC - NaOH	5,6 - 6,8
Натрий дигидрофосфат - динатрий гидрофосфат	5,8 - 8,0
Имидазол - HCl	6,2 - 7,8
MOPS - KOH	6,6 - 7,8
Триэтаноламин гидрохлорид - NaOH	6,8 - 8,8
Трис - HCl	7,0 - 9,0
HEPES - NaOH	7.2 - 8.2
Трицин - NaOH	7,6 - 8,6
Тетраборат натрия - борная кислота	7,6 - 9,2
Бицин - NaOH	7,7 - 8,9
Глицин - NaOH	8,6 - 10,6

Наиболее используемые добавки, их эффективные концентрации и их общее назначение перечислены в таблице ниже.

Класс добавки	пример	концентрация	цель
Соли	NaCl, KCl, (NH $_4$) $_2$ SO $_4$	50-150 mm	поддерживать ионную силу среды
Моющие средства	Дезоксихолат, тритон x-100	0,1-1%	солюбилизация плохо растворимых белков
глицерин		5-10%	стабилизация
Глюкоза или сахароза		25 mm	Стабилизировать лизосимальные мембраны, уменьшить высвобождение протеазы
Металлические хелаторы	ЭДТА, ЭГТА	1 mm	уменьшить окислительное повреждение, хелатные ионы металлов
Восстановители	DTT, DTE 2-меркаптоэтанол	1-10 мМ 0,05%	уменьшить окислительный ущерб
Лиганды, ионы металлов	Mg ²⁺ , АТФ, ГТФ	1-10 mm	стабилизация

Наиболее часто используемые буферы - это RIPA и NP-40. Жесткие свойства буфера RIPA лучше всего подходят для трудно растворимых белков.

- RIPA:
- 25mM Tris, HCl (pH 7.6)
- 150mM NaCl
- 1% NP-40
- 1% sodium deoxycholate
- 0.1% SDS

- NP-40:
- 50 mM Tris, HCl (pH 8.5)
- 150 mM NaCl
- 1% detergent

Приготовьте лизирующий буфер на 50 мл, если известна конечная концентрация компонентов.

• RIPA:

• 25mM Tris, HCl (pH 7.6)

- 2 a

- 3 g

- ? ml (1M)

150mM NaCl

- ? g

-?ml(4M)

• 1% NP-40

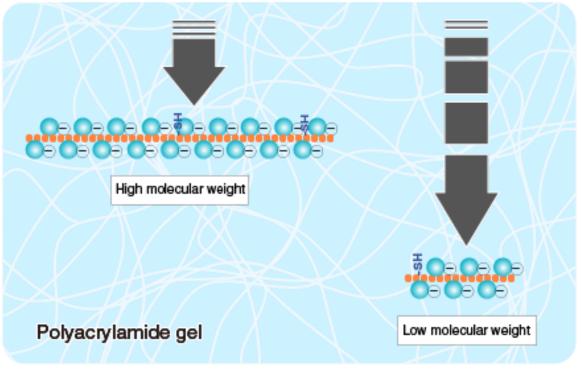
- ? ml (10%)

• 1% sodium deoxycholate

-? ml (15%)

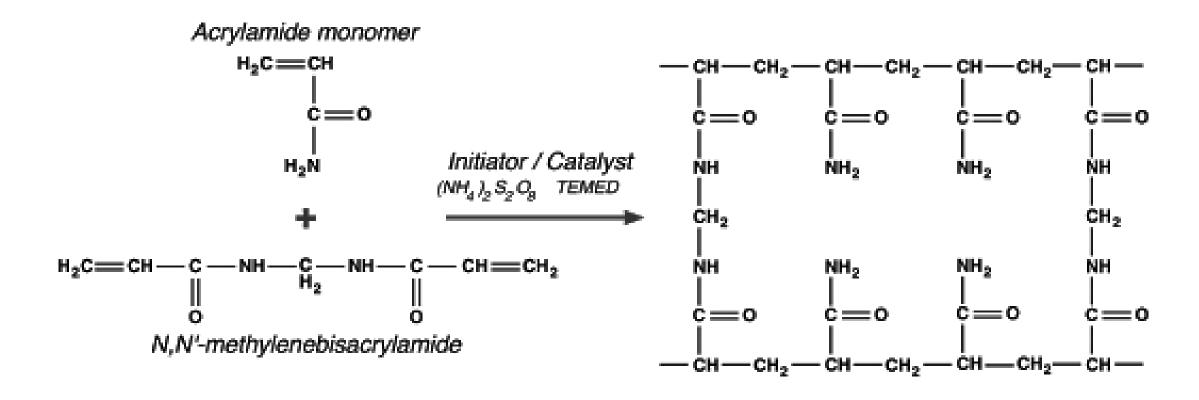
• 0.1% SDS

-? ml (10%)


- ? g

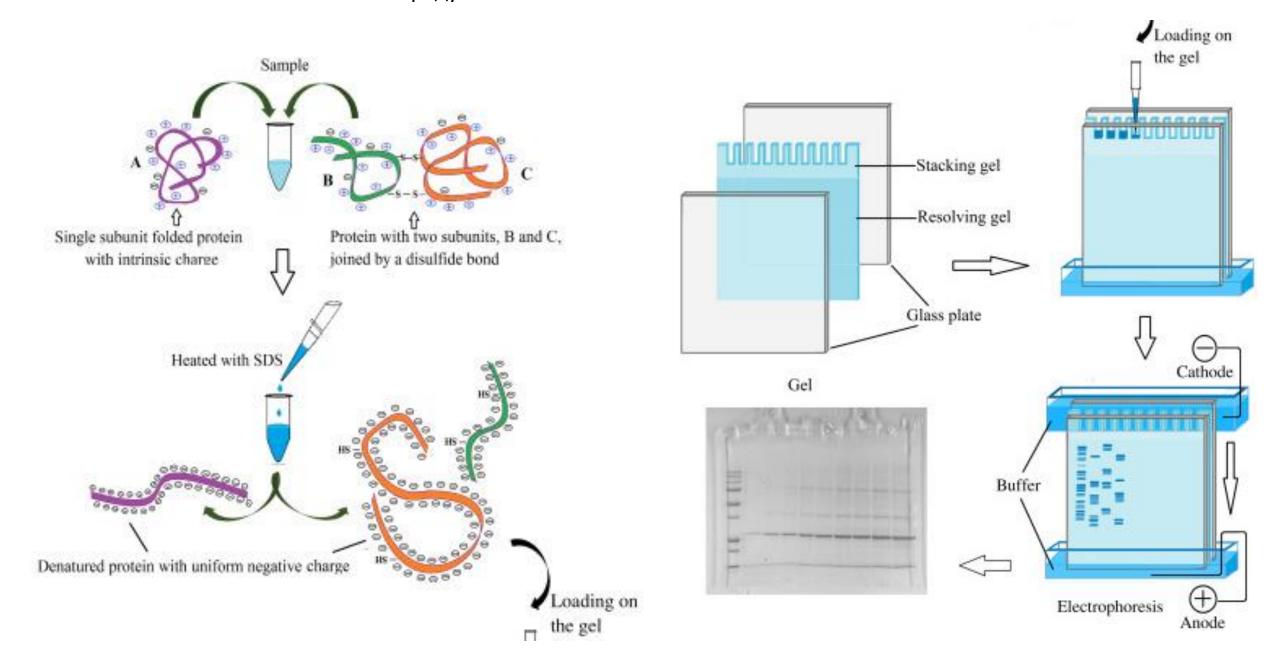
ПААГ-электрофорез.

• Под действием электрического поля заряженные частицы, растворенные или диспергированные в растворе электролита, передвигаются в направлении электрода противоположной полярности. При электрофорезе в геле движение частиц замедляется взаимодействием с окружающей гель-матрицей, действующей как молекулярное сито.


Proteins are separated based on their polypeptide chain length by electrophoresis in a polyacrylamide gel with an appropriate mesh size.

Cathode side

Anode side


• При электрофорезе на колонках с полиакриламидным гелем стационарной фазой является гель, приготовленный из смеси акриламида и N,N'- метиленбисакриламида.

ДСН-ПААГ — ГЕЛИ С ОДНОРОДНОЙ КОНЦЕНТРАЦИЕЙ

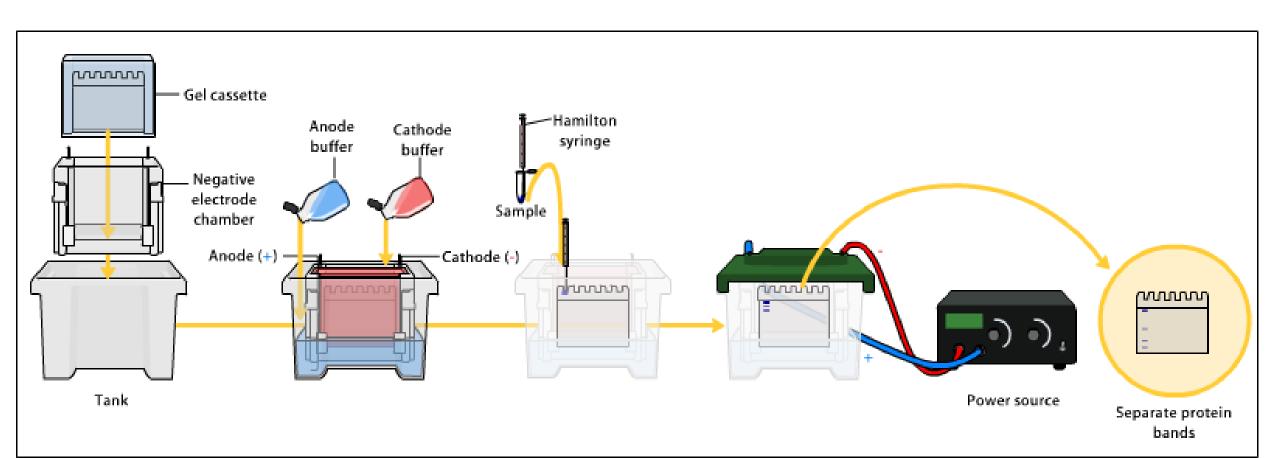
- Электрофорез в полиакриламидном геле применяется для качественной идентификации белков в биологических препаратах, контроля их чистоты и количественных определений.
- Данный метод позволяет анализировать мономеры полипептидов с молекулярной массой от 14 000 дальтон до 100 000 дальтон.
- Как правило аналитический электрофорез белков проводят в полиакриламидных гелях в условиях, обеспечивающих их диссоциацию на отдельные полипептидные субъединицы и минимизирующих агрегацию. Чаще всего перед нанесением на гель белки подвергают диссоциации нагреванием с сильным анионным детергентом натрия додецилсулфатом (ДСН).

Денатурированные полипептиды связываются с ДСН, превращаясь в отрицательно заряженные частицы с постоянным отношением массы к заряду независимо от типа белка.

Подготовка форезного аппарата

1.вымыть камеры детергентом, хорошо сполоснуть;

2.мыть стекла детергентом (если очень грязные или из сомнительного источника - хромпиком); если хочется, чтобы гель легко снимался со стекол - силиконизировать (достаточно 1 раз на \sim 10 прогонов);


3.оценить объем геля:

	камера:		
гель:	мини	миди	
концентр.	~2ml	~4ml	
разреш.	~10ml	~15ml	

- 4. приготовить нижний/разрешающий гель (без TEMED);
- 5.дегазировать ~10', во время дегазации заняться форезным прибором:
- * собрать форезный прибор, отметить фломастером уровень концентрирующего геля (длина зубчиков гребенки + 1cm);
- * \sim 5-10ml расплавленной 1.5% агарозы (в GTB-буфере) налить на ровную горизонтальную поверхность. Сразу же установить прибор со стеклами (агароза поднимется между стеклами на \sim 2-10mm).
- * "пролить" агарозой внешние края спейсеров;
- 6.залить разрешающий гель до отметки;
- 7. наслоить сверху бутанол (\sim 3-10mm);
- 8.во время полимеризации дегазировать концентрирующий гель;
- 9.после завершения полимеризации отсосать бутанол, 2-3 раза сполоснуть получившийся карман дистиллированной водой, отсосать остатки вытянутым типом;
- 10.вставить (не полностью) гребенку между стеклами;
- 11. залить концентрирующий гель, вставить полностью гребёнку;
- 12.после полимеризации установить верхнюю камеру в нижнюю, залить буфер, вытащить гребенку;
- 13.немедленно промыть лунки шприцом, поправить изогнувшиеся перегородки между карманами (либо плоским типом, либо иглой шприца);

Форез

- материал + буфер для нанесения, смешать, перед форезом прокипятить 5';
- перед нанесением промыть лунки шприцом;
- гнать при напряжении (для мини- и миди-камеры) ~10V/cm в концентрирующем геле, ~180V в разрешающем.

Реактивы

- 30% раствор полиакриламида (29 г акриламида + 1 г бисакриламида в 50 мл воды, полностью растворить с помощью магнитной мешалки, довести объем до 100 мл). Держите раствор вдали от солнечного света.
- 1,5 М Трис, pH 8,8
- 1 M Трис, pH 6,8
- 10% SDS (10 г SDS в 100 мл дистиллированной воды).
- 10% персульфат аммония (0,1 г в 1 мл воды). Это должно быть свежеприготовленным.
- TEMED 100%

• Выбор % разрешающего геля				
• Размер белка, kDa	%AA			
• 36-205	5%			
• 24-205	7.5%			
• 14-205	10%			
• 14-66	12.5%			
• 10-45	15%			

Stacking Gel (4 %)

	2 gels
DDI H ₂ O	3.9 ml
1.0 M Tris-HCl, pH 6.8 (SG Bfr.)	$500 \mu 1$
40% Acrylamide Stock	$500 \mu 1$
20 % SDS	$100 \mu 1$
30% Ammonium Persulfate	$16 \mu l$
TEMED	$8 \mu 1$

Resolving Gel

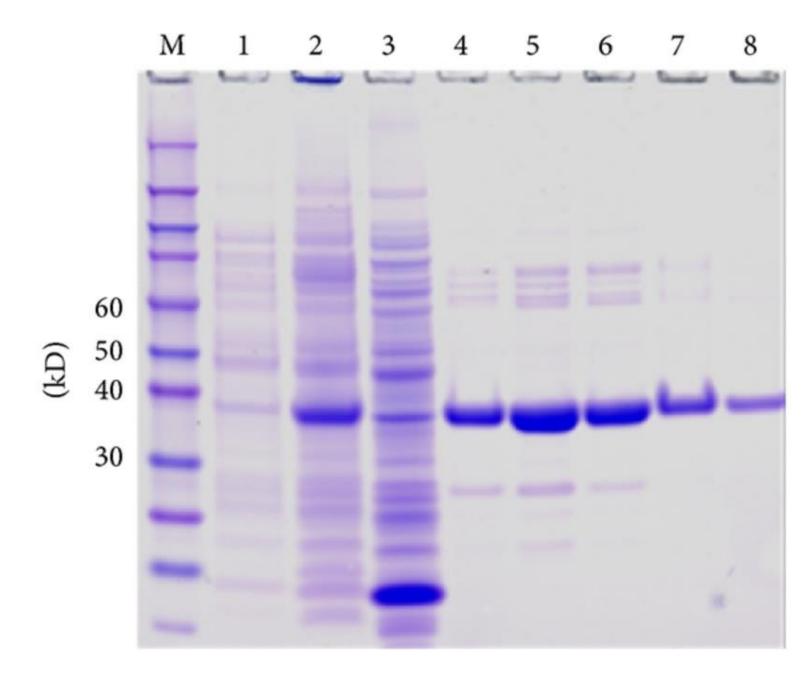
	1 gel	2 gels	1 gel	2 gels
DDI H ₂ O	1.8 ml	3.6 ml	1.6 ml	3.2 ml
1.5 M Tris-HCl, pH 8.8 (RG Bfr.)	1.3 ml	2.6 ml	1.3 ml	2.6 ml
40% Acrylamide Stock	$800 \mu l$	1.6 ml	1.0 ml	2.0 ml
20 % SDS	$100 \mu l$	$200 \mu 1$	$100 \mu l$	$200 \mu 1$
30% Ammonium Persulfate	$10 \mu l$	$20 \mu l$	$10 \mu l$	$20 \mu 1$
TEMED	$4 \mu l$	$8 \mu l$	$4 \mu 1$	$8 \mu 1$

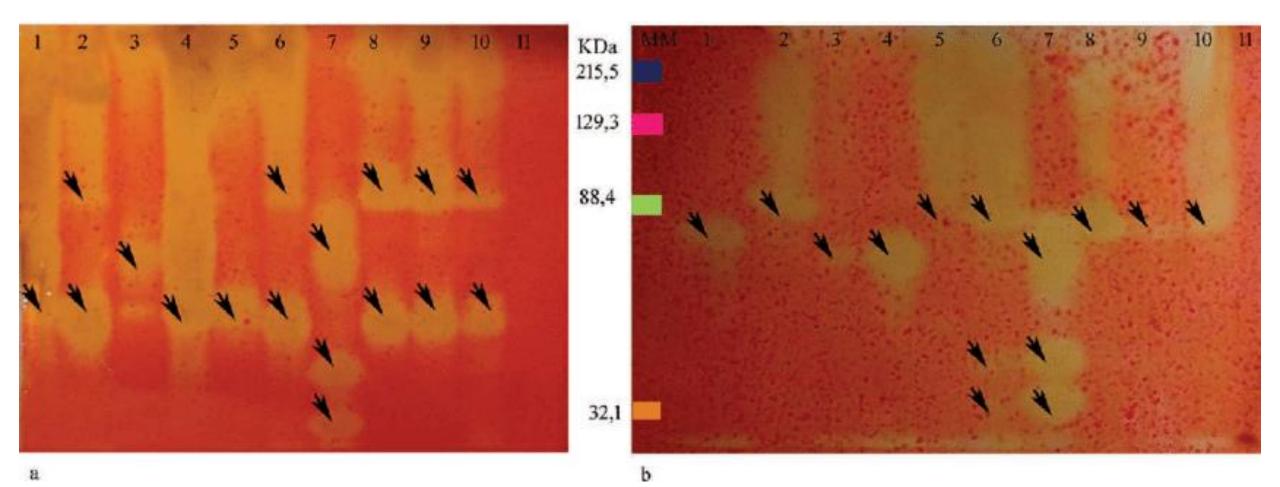
10x SDS-PAGE Running Buffer

- 30.3 g Tris base
- 144.0 g Glycine
- 10.0 g SDS

4x SDS-PAGE Sample Buffer

- 125 mM Tris HCl, pH 6.8 (1 M) 5 ml
- 20% Glycerol 8 ml
- 4% SDS (20%) 8 ml
- 10% ß-Mercaptoethanol 4 ml
- 0.5 mg/ml Bromophenol Blue 20 mg
- DDI H2O 15 ml
- Total 40 ml


Coomassie Stain Solution:


- Ethanol 150 ml
- Glacial Acetic Acid 50 ml
- DDI H2O 300 ml
- Coomasie Brilliant Blue–R-250
 1 g

Coomassie Stain Solution:

- Ethanol 1200 ml
- Glacial Acetic Acid
 400 ml
- DDI H2O 2.4 l

pl глицина – 6,06

ЛИТЕРАТУРА

- 1. Patrinos, G. P., Danielson, P. B. & Ansorge, W. J. Molecular Diagnostics: Past, Present, and Future. in Molecular Diagnostics: Third Edition (2016). doi:10.1016/B978-0-12-802971-8.00001-8.
- 2. Ali, N., Rampazzo, R. D. C. P., Costa, A. Di. T. & Krieger, M. A. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BioMed Research International (2017) doi:10.1155/2017/9306564.
- 3. Green, M. R. & Sambrook, J. Molecular Cloning, 3-Volume Set: A Laboratory Manual. Cold Spring Harbour Laboratory Press (2012).
- 4. Glick B.R., Pasternak J.J. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 5th ed. ASM Press, 2018.
- 5. Nicholl D.S.T. An Introduction to Genetic Engineering. 4th ed. Cambridge University Press, 2021.
- 6. Green M.R., Sambrook J. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, 2012.
- 7. Lodish H., Berk A., Zipursky S.L. Molecular Cell Biology. 9th ed. W.H. Freeman, 2021.